User Costs Model for Road Management Systems

A Simplified Approach for Portuguese Conditions

Bertha Santos
Luís Picado Santos
Victor Cavaleiro
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Introduction

The material presented in this paper is part of a PhD research work finished in 2008 and recent new developments.

✓ Objective

Develop a Simplified Road User Cost Model to use in Portuguese road management systems.

✓ Aiming at

Simplicity; reduced data requirements; easy calibration; easy application and trustworthy results.
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Introduction

Portuguese RUC Model conceptual framework was based in simplifications of:

- HDM-4 equations for VOC
- COBA and HDM-4 approach for AC
- JAE Model and HDM-4 equations for VOT

Other models studied:
- NZVOC
- TxDOT Manual
The proposed model was developed taking into account:

- Recognized conceptual principles
- Application to trunk roads
- Impact of each component on total RUC
- Portuguese conditions
- Availability of Portuguese official data
- Four vehicle classes: PC, U, HT, HB
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Methodology

Simplified Road User Costs Model

- **Vehicle Operating Costs** (fuel, tyres, vehicle maintenance and depreciation)
- **Accident Costs** (for accident and casualty)
- **Value of Travel Time**
- **Tolling Costs**

Recent refinements were made to include the effect of working zones and pavement conditions.
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Formulation

\[
RUC_{\text{total}} = RUC \times L + RUC_{\text{M&R}} \times L_{\text{M&R}} + RUC_{\text{PSI}} \times L_{\text{PSI}}
\]

\[
RUC = VOC + AC + VOT + Toll
\]

\[
RUC_{\text{M&R}} = dCf + dVOT
\]

\[
RUC_{\text{PSI}} = VOC \times F_{VOC,\text{PSI}}
\]

\[
VOC = AADT \times \sum_{i=1}^{4} (VOC_i \times p_i)
\]

\[
AC = AADT \times \left(\sum_{i=1}^{3} AC_i + \sum_{k=1}^{3} CC_k \right)
\]

\[
VOT = AADT \times \sum_{i=1}^{4} (VOT_i \times p_i)
\]

\[
Toll = AADT \times \sum_{i=1}^{4} (ctoll_i \times p_i)
\]
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Model Validation

Passenger Car VOT and VOC distribution

<table>
<thead>
<tr>
<th>Model</th>
<th>VOT</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTRUC (2006)</td>
<td>66.3</td>
<td>33.7</td>
</tr>
<tr>
<td>HDM-4 (2006 Portuguese conditions)</td>
<td>78.9</td>
<td>20.4</td>
</tr>
<tr>
<td>COBA (2002)</td>
<td>88.6</td>
<td>11.4</td>
</tr>
<tr>
<td>NZVOC (2002)</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TxDOT Manual (1998)</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JAE RUC (1995)</td>
<td>65.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Average Mod</td>
<td>77.5</td>
<td>22.3</td>
</tr>
</tbody>
</table>
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Model Validation

Heavy Truck VOT and VOC distribution

<table>
<thead>
<tr>
<th>Method</th>
<th>VOT</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTRUC (2006)</td>
<td>15.8</td>
<td>84.2</td>
</tr>
<tr>
<td>HDM-4 (2006)</td>
<td>6.5</td>
<td>93.5</td>
</tr>
<tr>
<td>COBA (2002)</td>
<td>13.6</td>
<td>86.4</td>
</tr>
<tr>
<td>NZVOC (2002)</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>TxDOT Manual (1998)</td>
<td>12.9</td>
<td>87.1</td>
</tr>
<tr>
<td>JAE RUC (1995)</td>
<td>11.0</td>
<td>89.0</td>
</tr>
<tr>
<td>Average Mod</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Sensitive Parameters of the Model

- Vehicle operating speed
- Fuel consumption and cost

Main parameters in determining additional RUC due to work zones and pavement condition
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Additional RUC due to Work Zones

More important in trunk roads

Decrease of operating speed

Additional fuel consumption

More significant in two lanes roads with “medium” design standards

Increases VOT

Increases VOC

Work Zones
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Additional RUC due to Work Zones

\[
RUC_{\text{M&R}} = dCf + dVOT
\]

\[
dCf = \text{AADT} \times \sum_{i=1}^{4} (0.2 \times C_{f_i} \times p_i) \quad \text{for} \quad s_{M&R_i} \leq \frac{1}{3} \times s_i \quad \text{and ER, EN}
\]

\[
dVOT = \text{AADT} \times \sum_{i=1}^{4} (VOT_{M&R_i} \times p_i) - VOT
\]

\[
VOT_{M&R_i} = \frac{1}{s_{M&R_i}} \times \sum_{m=1}^{4} (T_{C_m} \times O_{R_{i,m}})
\]
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

Additional RUC due to Pavement Condition

- Not significant in trunk roads
- **Decrease in operating speed**
- **Increase in non-fuel VOC**
- More important in trunk roads
- Increase VOT
- Increases VOC

Pavement Condition
Additional RUC due to Pavement Condition

<table>
<thead>
<tr>
<th>PSI</th>
<th>IRI (m/km)</th>
<th>Correction factors for VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.25</td>
<td>1.15</td>
</tr>
<tr>
<td>2.0</td>
<td>3.50</td>
<td>1.05</td>
</tr>
<tr>
<td>3.5</td>
<td>2.00</td>
<td>1.00</td>
</tr>
<tr>
<td>4.7</td>
<td>0.50</td>
<td>0.95</td>
</tr>
</tbody>
</table>

\[
RUC_{\text{PSI}} = VOC \times F_{\text{VOC, PSI}} \\
F_{\text{VOC, PSI}} = -0.0017 \times \text{PSI}^3 + 0.0139 \times \text{PSI}^2 - 0.0712 \times \text{PSI} + 1.15 \\
\text{PSI} = 5 \times e^{-0.0002598 \times \text{IRI}/2} - 0.002139 \times R^2 - 0.03 \times (C + S + P)^{0.5}
\]
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

RUC Model Applications Results

<table>
<thead>
<tr>
<th>Costs</th>
<th>Scutvias (A23) Average values</th>
<th>Scutvias (A23) Work Zone PSI=2.0</th>
<th>Aenor (A7 and A11) Average values</th>
<th>Aenor (A7 and A11) Work Zone PSI=2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>2.267 € 60%</td>
<td>2.379 € 56%</td>
<td>1.352 € 53%</td>
<td>1.419 € 49%</td>
</tr>
<tr>
<td>AC</td>
<td>83 € 2%</td>
<td>83 € 2%</td>
<td>73 € 3%</td>
<td>73 € 3%</td>
</tr>
<tr>
<td>VOT</td>
<td>703 € 19%</td>
<td>1.055 € 25%</td>
<td>505 € 19%</td>
<td>758 € 26%</td>
</tr>
<tr>
<td>Toll</td>
<td>742 € 19%</td>
<td>742 € 17%</td>
<td>637 € 25%</td>
<td>637 € 22%</td>
</tr>
<tr>
<td>RUC</td>
<td>3.795 € 100%</td>
<td>4.259 € +12%</td>
<td>2.567 € 100%</td>
<td>2.887 € +12%</td>
</tr>
</tbody>
</table>
The developed RUC Model constitutes a suitable model to Portuguese reality. The main improvements of the proposed model over the existing ones are the reduced amount of data, its availability and a simple and flexible model formulation. The incorporation of the Additional RUC due to the explicit consideration of work zones delays and involving a explicit pavement condition indicator will allow more accurate RUC calculations to be use in asset management systems.
User Costs Model for Road Management Systems - A Simplified Approach for Portuguese Conditions

THANK YOU FOR YOUR ATTENTION!!!