Asphalt concrete mixtures with high RA content
Design and performance

Maria de Lurdes Antunes, LNEC
Fátima Batista, LNEC
Luís Picado Santos, FCT UC
António Baptista, IPV
Paulo Pereira, UM
Jorge Pais, UM
Background: Hot mix asphalt recycling in Portugal

> 1999 - First known applications of RA in the production of hot mix asphalt concrete in Portugal

> Growing interest in asphalt recycling since then

> 2009 – Review of E 472
Background: Hot mix asphalt recycling in Portugal

2009 – New specifications for highway works (Estradas de Portugal) include provisions for use of RA in Hot Mix Asphalt Concrete (HMAC)

Many CE marked HMAC in Portugal include up to 20% of RA

Higher percentages of RA are used in specific cases
Objectives

> To discuss the main issues associated with the used of high RA contents in HMAC

> To present research results concerning mix design and performance of HMAC with high RA
 • Project REPARE (LNEC + FCT UC + UM)
Main issues associated with high RA content in HMAC

> Technology No longer an issue

> Mix design
 > Grading of aggregate mixture Too many fines
 > Binder properties Properties of final blend?

> Variability
Control of variability in HMAC with RA
At the asphalt plant

> Separation of RA into 2 or more stockpiles
 ● According to RA particle size
 ● More flexibility to adjust aggregate gradation
 ● Better consistency of binder content (finer particles will have higher content)

> Blending the materials to get a uniform stockpile
Control of variability in HMAC with RA

At the lab

> Test several samples for aggregate gradation and binder content and properties
 - Reblend the materials if variability is too high

> Use representative samples of RA for mix design
 - Blend different samples to get a representative sample
Early applications of HMAC using RA Rehabilitation of EN 105 road pavement (1999)
Rehabilitation of EN 105 Mix composition (binder course)

- 40 % Reclaimed Asphalt
- 15 % Aggregate 14/20
- 10 % Aggregate 10/14
- 10 % Aggregate 6/10
- 23 % Fine aggregate 0/6
- 2 % Aded filler

Virgin bitumen: pen 35/50
Final binder content: 5.4 %
Rehabilitation of EN 105
Grading of aggregate mixture

EN 105
Hot mix asphalt concrete with 40% RA
Rehabilitation of EN 105
Binder properties

Asphalt concrete mixtures with high RA content
Design and performance

Recovery of binder properties

0 20 40 60 80 100
Penetration, 0.1 mm

0 20 40 60 80 100
Softening point, ºC

0 20 40 60 80 100
Content of virgin bitumen in the final blend

Virgin bitumen PEN 35/50
Recovered binder (from RA)

t_{AB}(ºC) 50/58
Final blend

Final blend
Rehabilitation of EN 105 Stiffness and fatigue

FWD tests
E > 5000 Mpa (@ ~20°C)

Field testing

Lab testing

4 PB (f=10Hz; t = 22°C)

Stiffness: E ≈ 4000 MPa

Field testing

Lab testing

Vigas de mistura reciclada em central
Mistura convencional, tipo macadame betuminoso

Extensão (µm)

Número de aplicações de carga

Road Pavements: Materials, design and performance
Lisboa, LNEC, 25 March 2010
Rehabilitation of EN 105 Resistance to permanent deformation

Wheel tracking tests \((t = 60^\circ C)\)

\[
\begin{array}{c}
\text{Tempo (minutos)} \\
\text{Deformação (mm)}
\end{array}
\]

\(L_1\) and \(L_2\)

\(V_{105-120}^{10^{-3}\text{mm/min}}\)

(WT, LNEC)
Rehabilitation of EN 105

Still in good shape after 10 years!

Asphalt concrete mixtures with high RA content
Design and performance
HMAC with high RA content
Laboratory investigation

> Laboratory mixtures produced with the following materials:

- RA milled from motorway A1 (Pombal / Condeixa); 5.1% binder content (pen 14 x 0.1mm).
- Virgin binder:
 - Pen 35/50
 - Pen 50/70
 - Pen 70/100
- Virgin aggregates: limestone

> Follow-up of previous studies concerning mixtures with up to 40% RA (António Baptista, 2006)
HMAC with 60 - 70% RA Aggregate grading

- No added filler
- Only 15/25 mm virgin aggregates
Marshall mix design for HMAC (1/3)
70% RA; pen 50/70 virgin binder

Density

![Density graph]

Void content

![Void content graph]
Marshall mix design for HMAC (2/3)
70% RA; pen 50/70 virgin binder

Marshall stability

Flow
Marshall mix design for HMAC (3/3)
70% RA; pen 50/70 virgin binder

Voids in Mineral Aggregate

Selected binder content: 5,0 % (total)
HMAC with 70% RA; 50/70 pen virgin binder
Marshall characteristics and water sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Bulk Density (Mg/m³)</th>
<th>Void content (%)</th>
<th>Marshall Stability (kN)</th>
<th>Marshall Flow (mm)</th>
<th>VMA (%)</th>
<th>ITSR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>2,395</td>
<td>2,9</td>
<td>25,4</td>
<td>2,8</td>
<td>13,4</td>
<td>100</td>
</tr>
<tr>
<td>EP specification</td>
<td>-</td>
<td>3 - 6</td>
<td>7,5 - 15</td>
<td>2 - 4</td>
<td>≥ 14</td>
<td>-</td>
</tr>
</tbody>
</table>
HMAC with 70% RA; 50/70 pen virgin binder
Wheel tracking test
HMAC with 70% RA; 50/70 pen virgin binder

Stiffness (MPa) vs Temperature (°C) for different frequencies (Hz):
- f=0.2Hz
- f=0.1Hz
- f=1Hz
- f=10Hz
- f=5Hz
- f=2Hz
- f=1Hz
- f=0.5Hz

Asphalt concrete mixtures with high RA content

Road Pavements: Materials, design and performance
Lisboa, LNEC, 25 March 2010
HMAC with 70% RA; 50/70 pen virgin binder

Stiffness

Phase angle (°)

Temperature (°C)

f=0.1Hz

f=0.2Hz

f=0.5Hz

f=1Hz

f=2Hz

f=5Hz

f=10Hz
HMAC with 70% RA; 50/70 pen virgin binder
Fatigue (25°C; 10 Hz)
HMAC with high RA content
Laboratory mixtures

<table>
<thead>
<tr>
<th>RA</th>
<th>Virgin binder (pen grade)</th>
<th>Final binder content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35/50</td>
<td>-</td>
</tr>
<tr>
<td>20 %</td>
<td>35/50 50/70</td>
<td>-</td>
</tr>
<tr>
<td>30 %</td>
<td>35/50 50/70 70/100</td>
<td>4.4%</td>
</tr>
<tr>
<td>40 %</td>
<td>35/50 50/70 70/100</td>
<td>4.7%</td>
</tr>
<tr>
<td>70 %</td>
<td>- 50/70 70/100</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Fatigue of laboratory mixtures with RA (4PB @ 25ºC; 10 Hz)
Fatigue of laboratory mixtures with RA (4PB @ 25°C; 10 Hz)
Fatigue of laboratory mixtures with RA (4PB @ 25°C; 10 Hz)
Final remarks

> Using high RA content in HMAC
 ● Need extra care to control variability
 ● Difficult to comply with standard (empirical) specifications
 ● You can still achieve good performance!

> Future work
 ● Assess ageing of mixtures with high RA
 ● Move to performance specifications