The experience of Ascendi in design and implementing a Multi-Lane Free-Flow Tolling System (MLFF)

IRF World Meeting 2010 – 16th World Meeting

Pedro Pinto

Lisboa, May 25 - 28, 2010
AGENDA

- Ascendi
- Framing
- Project organization
- MLFF architecture solution
- System functioning

www.irf2010.com
Ascendi is a Portuguese Company who operates in the transport sector. The major shareholders are Mota-Engil (construction company) and BES (bank sector).

Road Concessions:
- Portugal: 7 + 3 Concessions > 1425 km’s
- Spain: 3 Concessions > 290 km’s
- Mexico: 1 Concession > 60 km’s
- Brazil: 1 Concession > 400 km’s
- Presences in Mozambique and Slovaquia

More than 2150 km’s of roads under operation.
11 years building and operating new roads

1999 - North Concession - 175 km
2000 - Costa de Prata Concession - 110 km
2001 - Beiras Litoral e Alta Concession - 173 km
2002 - Grande Porto Concession - 56 km
2007 - Grande Lisboa Concession - 91 km
2008 - Douro Interior Concession - 270 km
2010 - Pinhal Interior Concession - 550 km

www.irf2010.com
Location:

- North Concession
- Grande Porto
- Douro Interior
- Costa da Prata
- Beiras Litoral e Alta
- Pinhal Interior
- Grande Lisboa

www.irf2010.com
AGENDA

- Ascendi
- Framing
- Project organization
- MLFF architecture solution
- System functioning

www.irf2010.com
Ascendi is closing an agreement with the Portuguese Government to change two Concessions working in shadow toll schema to a real toll schema (Grande Porto and Costa da Prata).

Due to the technical characteristics of these concessions a *Multi-Lane Free-Flow* (MLFF) system was considered to be the best solution.
THE MLFF TOLL SYSTEM
Main features of MLFF System

MLFF System characteristics, under the agreement established in December 2008

- Fully automated system requiring no human intervention for collection;
- Open System with main road Charging Points (CP) in selected sub-stretches:
 - Costa de Prata – 22 CP
 - Grande Porto – 26 CP
- Each CP will collect a toll rate corresponding to its predefined influence area;
- Vehicle identification through ELP (*Electronic License Plate*) reading or photograph with License Plate Recognition using OCR technology;
- The CP transactions comprised in a journey will be clustered in a single business transaction that is in everyway similar to that of a closed system transaction, in which the toll amount charged is determined by the entrance and exit interchange.

www.irf2010.com
System functioning characteristics derive from the implementation of a Vehicles Electronic Identification System (VEIS), accordingly with PT legislation (May 18th 2009)

- All vehicles to be equipped with Electronic License Plate (ELP)
 [OBU with DSRC technology compatible with existing toll collecting system]

- Payment systems available:

 - Primary collection to be available by CTCE (Certificated Toll Collecting Entities, eg: Via Verde)
 - Payment system under contract (direct debit)
 - Pre-payment anonymous system
 - Pre-payment system with user’s identification

 - Secondary collection to be available in CTT (Portuguese Post Office Company)
 - Post payment anonymous system

- Enforcement collection model previewed for non payments;

- Previewed a schema to apply to foreign cars.

www.irf2010.com
MLFF TOLL SYSTEM

TOLL Collection processes

Collection Entities

- **PRIMARY COLLECTION (CTCE)**
- **SECONDARY COLLECTION (CTT)**
 - *Up to 5 days [1]*
- **SECONDARY COLLECTION (Concessionaire)**
 - *15 days after notified (Art 10° of L85/2006)*

CONCESSIONAIRES

- **ENFORCED COLLECTION**
 - **Conc.**
 - **InIR**

ENFORCED COLLECTION

Toll collection through the appeal of an administrative offence regime, with payment of administrative costs and fine

[1] From 00:00 of the day following the passage

MLFF

TOLL SYSTEM

TOLL Collection processes
June 1st 2009: Contract date for the beginning of the project

September 1st: 1st System Release

10 CP
Send transactions to Via Verde and CTT (Post-Payment)

July 1th: Global Operation

48 CP
Support to processing of manual verification (ALPR)
Send transactions to Via Verde and CTT (Post-Payment)
All collecting processes available (primary, secondary e enforcement)
AGENDA

• Ascendi
• Framing
• Project organization
• MLFF architecture solution
• System functioning
The Organization Model to support the project management is based on the following principles:

- Five parallel Working Lines coordinated by a common Program Management team.
- Each Working Line deals with specific subsets of the system.
PROJECT ORGANIZATION

Involved Entities

ECOSYSTEM of ENTITIES INVOLVED IN THE MLFF SYSTEM IMPLEMENTATION AND OPERATION

PT STATE
- Grantor of the Concession Contracts

EP
- Publicly owned private company entitled to the toll income.
- Grantor of the Tolling Service Contracts

EQUIMETRAGEM
- Private Company owned by Ascendi assuring the implementation, operation and maintenance of the MLFF System

STATE (Public Services)
- Entities that exchange the necessary information for the operation of MLFF system

TOLL COLLECTING ENTITIES
- Certified entities by SIEV to assure toll collecting services in the system:
 - Primary Collection – Via Verde, or others
 - Secondary Collection - CTT

SUPPLIERS OF DIFFERENT SYSTEM SUBSETS
- RSE & OBO
- Q FREE
- Software CBO
- Q FREE
- CBO
- Comunications network
- Civil Works, Inf., Elec.
- Civil Works, DC
- manvia

www.irf2010.com
<table>
<thead>
<tr>
<th>Involved Entities</th>
<th>References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portuguese Consultant Supplier of Project Management Office (PMO + PSO)</td>
<td>SIRESP in Portugal; NHCC in Portugal; ELP study for PT Nacional Authorities</td>
</tr>
<tr>
<td>Norwegian Supplier of Electronic Tolling Systems (DSRC or Satellite)</td>
<td>ETC in Portugal and Bangkok; Congestion Charging in Stockholm; Truck Tolling System in Slovakia; MLFF in Sydney; DSRC Tags</td>
</tr>
<tr>
<td>International Consultants implementing CBO</td>
<td>Via Verde in Portugal; Dulles Greenway USA; Toll Collect (PMO) in Germany; HGV Tolling in Czech. Rep.</td>
</tr>
<tr>
<td>German Supplier for the CBO Software (ETC – vertical solution)</td>
<td>Via Verde in Portugal; Vespucio in Chile</td>
</tr>
<tr>
<td>Portuguese Telecom Supplier of the communication network</td>
<td>Telematic and Tolling Networks (NetBand) – Portugal and others;</td>
</tr>
<tr>
<td>Portuguese Supplier for civil works and gantries</td>
<td>Telematic and Technical installations – Portugal</td>
</tr>
<tr>
<td>Portuguese Supplier for civil works and electricity</td>
<td>Civil works and Technical Maintenance - Portugal</td>
</tr>
</tbody>
</table>

www.irf2010.com
AGENDA

- Ascendi
- Framing
- Project organization
- MLFF architecture solution
- System functioning
The MLFF system is structured in three major components:

1. RSE - Roadside Equipment
2. OBO - Operational Back-Office
3. CBO - Commercial Back-Office
SYSTEM’S ARCHITECTURE
Charging Point Functional Architecture – RSE

Vehicle Detection and Classification Subsystem
- Detection of vehicle passage
- Determination of vehicle’s class through volume characteristics (height, width, length, trailer existence)

Electronic Collecting Subsystem
- Reading of vehicles’ OBU

Video Subsystem
- Vehicle image capture: front, back and context
- Vehicles’ Automatic License Plate Recognition

Lane controller Subsystem
- Correlation of data from different subsystems
- Transmission to Back-Office System

www.irf2010.com
SYSTEMS' ARCHITECTURE
Charging Point – Gantries
SYSTEMS' ARCHITECTURE
Charging Point – Gantries with equipments
SYSTEM’S ARCHITECTURE
Functional Architecture of Operational Back-Office – OBO

Interface with Charging Points
- Transactions collection
- RSE monitoring and parameterization
- Distribution of toll rates lists and status lists

Transactions Processing
- Transaction validation (treatment of anomalies, discrepancies, offenses)
- Second level of automatic license plate recognition
- Transaction rerate process
- Consolidation of unitary transactions into business transactions (includes journey analyses, and transaction recovery)

Rate Management
- Definition of toll rates
- Simulation of toll rate application

Interface with Comercial Back-Office
- Transfer of business transactions to CBO
- Support of customer data base
SYSTEM’S ARCHITECTURE

Functional Architecture of Commercial Back-Office—CBO

Processes of Secondary and enforcement collection

- Owner and Driver Identification, when necessary
- Issuance of written notices

Collection Management

- Payments reception
- Management accounts of customers
- Management of financial reconciliation processes
- Management of financial flows

Claims Management

- Treatment of Customer Claims
- CRM
- Contact Center

Interfaces with External Entities

- Information exchange with collecting entities (CTT, VV and others)
- Information queries to other entities (e.g., IMTT, InIR, vehicle owner to CRA)
SYSTEM’S ARCHITECTURE
CBO and External Entities [1 of 2]

Estradas de Portugal
- Owner of Toll Income

Instituto de Infra-Estruturas Rodoviárias
- Enforcement collection process
- Information exchange

Instituto da Mobilidade e Transportes Terrestres
- Conventional to electronic license plates association
- ELP’s issuer lists

SIEV / Back-Office Operator
- Reception of ELP’s lists (lists of ECP, white lists and/or black lists)
- Sending of traffic public events

Conservatória do Registo Automóvel
- Identification of vehicle owners

Collecting Entities and others Financial Entities
- Business transaction forwarding and reception of information about payments

www.irf2010.com
SYSTEMS' ARCHITECTURE
Back-Office – Data Center
AGENDA

- Ascendi
- Framing
- Project organization
- MLFF architecture solution
- System functioning

www.irf2010.com
SYSTEM’S MAIN FUNCTIONALITIES

Global Vision

- Vehicles passage on a Charging Point
 - RSE system
- Transactions - Operational Processing
 - OBO system
- Transactions - Commercial Processing
 - CBO system

- Vehicles’ Detection and Classification
- Interface with Charging Points
- Invoicing
- Electronic Collection
- Rates Management
- Collecting
- Video
- Transactions Processing
- Customers management
- Lane Controller
- Others Interfaces and Monitoring
- Interface with External Entities

www.irf2010.com
SYSTEM’S FUNCTIONING
Lane Equipment – RSE System

Vehicles’ Detection and Classification Subsystem
Electronic Collection Subsystem
Video Subsystem
Lane controller subsystem

Rear Camera
Front Camera
Context Camera
Antena TX
Antena RX
Vehicles’ detection and classification lasers

www.irf2010.com
SYSTEM’S FUNCTIONING
Lane Equipment – RSE System

www.irf2010.com
SYSTEM’S FUNCTIONING
Lane Equipment – RSE System

Front Photo

Rear Photo

Context Photo

Automatic Licence Plate Recognition (ALPR)

www.irf2010.com
SYSTEM’S FUNCTIONING
System’s Main features and modules – OBO – Examples

Transactions’ Processing
Ex: Validation by operator
SYSTEM’S FUNCTIONING
System’s Main features and modules – OBO – Examples

Others Interfaces and Monitoring
Ex: Real-Time Monitoring

www.irf2010.com
SYSTEM’S FUNCTIONING

Collecting

- System’s Main features and modules – CBO – Examples

- **Collecting**

- **Invoicing**

Invoicing

- Dados cabeçalho p/documento cálculo fatura 10000000077

<table>
<thead>
<tr>
<th>Doc.CalcFat</th>
<th>CatFat</th>
<th>NF est.</th>
<th>Sistema lógico</th>
<th>TO</th>
<th>Parâmetro</th>
<th>Cta.cont.</th>
<th>InfoPerDoc</th>
<th>Firm</th>
<th>S</th>
<th>Moeda/Ct</th>
<th>DltImpost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000077</td>
<td>10000000031</td>
<td>10000000077</td>
<td>DRC/CL/110</td>
<td>B1</td>
<td>102</td>
<td>102</td>
<td>08.09.2006</td>
<td>08.09.2006</td>
<td>EUR</td>
<td>01</td>
<td>04</td>
</tr>
</tbody>
</table>

- **Invoicing**

- Dados do cabeçalho para o documento de faturamento 10000000031

<table>
<thead>
<tr>
<th>Doc.Fatura</th>
<th>Proc</th>
<th>TpFaturat</th>
<th>CitFat</th>
<th>Parâmetro</th>
<th>Cta.cont.</th>
<th>Criado por</th>
<th>Date</th>
<th>ChgReconc.</th>
<th>DataId</th>
<th>Data doc</th>
<th>Vencimento</th>
<th>Moeda</th>
<th>Montante</th>
<th>Pagamento</th>
<th>Simulado</th>
<th>DocId</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000031</td>
<td>04</td>
<td>6</td>
<td>102</td>
<td>08.03.2006</td>
<td>17:59:13</td>
<td>08.09.2006</td>
<td>08.09.2006</td>
<td>23.09.2006</td>
<td>EUR</td>
<td>50.00</td>
<td>EUR</td>
<td>04</td>
<td>08</td>
<td>www.irf2010.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SYSTEM’S FUNCTIONING

System’s Main features and modules – CBO – Examples

Customers’ management

Ex: Issue of notice with fine

Interface with External Entities

Ex: Sending of enforced collection process to InIR

Histórico da advertência: síntese
Thank You!

ppinto@ascendi.pt

IRF World Meeting 2010 – 16th World Meeting
Pedro Pinto
Lisboa, May 25 - 28, 2010