The development of EME in Europe requires an appropriate approach for the climate

Tine Tanghe
Hilde Soenen
NCCA, Nynas NV
Introduction

- Growing and heavier traffic: roads stressed more
- “Enrobés a Module Elevé” – EME
 - Increased stiffness
 - But remains ‘flexible’
 - Bitumen – visco-elastic behaviour
 - Less prone to cracking in comparison to concrete
 - Bitumen: harder than normal ‘pen grade road bitumen’
 - Depending climate: 10/20 to 20/30
 - Optimisation bitumen/mix design: balance stiffness (rutting) and fatigue
Development and History

France – 2 classes - requirements:

- Performance of the asphalt mix:
 - Compaction – workability
 (voids by gyratory)
 - Resistance to rutting
 (French wheeltracking at 60°C – 30000 cycles)
 - Stiffness of the mix
 (2 point bending test, 15°C and 15 Hz)
 - Resistance to fatigue
 (2 point bending test, 10°C and 25 Hz)
 - Durability - water sensitivity
Overview requirements EME

<table>
<thead>
<tr>
<th></th>
<th>EME class 1</th>
<th>EME class 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyratory compaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% voids @ C80 (D 10 mm)</td>
<td>%</td>
<td><10</td>
</tr>
<tr>
<td>C100 (D 14 mm)</td>
<td></td>
<td><6</td>
</tr>
<tr>
<td>C120 (D 20 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutting resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60°C & 30000 cycles</td>
<td>%</td>
<td>7.5</td>
</tr>
<tr>
<td>Dynamic modulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15°C & 10 Hz</td>
<td>"MPa"</td>
<td>14000</td>
</tr>
<tr>
<td>Fatigue resistance @ 1 million cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10°C & 25 Hz</td>
<td>µstrain</td>
<td>100</td>
</tr>
<tr>
<td>Duriez (water sensitivity)</td>
<td></td>
<td>> 0.7</td>
</tr>
<tr>
<td>r/R ratio</td>
<td></td>
<td>> 0.75</td>
</tr>
</tbody>
</table>

Note:
- C: Coarse aggregate
- D: Fine aggregate
- %: Percentage
- "MPa": Megapascal
- µstrain: Micron strain
- r/R ratio: Radial to axial ratio
Requirements binder in EME

- Good quality mineral
- Hard bitumen: EN13924
 - + (new) rheological tests: DSR – BBR – DDT
- Bitumen film thickness – minimum percentage bitumen (assure durability)

MODULE DE RICHESSE (Richness modulus)!

- Measure for film thickness on the aggregate skeleton

\[\% \text{ bitumen} = \alpha \times K \times \varepsilon^{1/5} \]
Module de Richesse

\[K = "module de richesse" \text{ (Minimum 3.4 in France – EME 2 – advised 3.6)} \]

\[\% \text{ bitumen} = \alpha \times K \times \varepsilon^{1/5} \]

\[\alpha = \frac{2.65}{\gamma G} \]

\[\gamma G = \text{apparent density of the aggregates mix} \]

\[\varepsilon = \frac{0.25G + 2.3S + 12s + 135f}{\text{conventional specific surface}} \]

\[G = \text{percentage on sieve 6.3 mm} \]

\[S = \text{percentage of mineral through sieve of 6.3 mm and on sieve of 300 \(\mu m \)} \]

\[s = \text{percentage of mineral through sieve of 300 \(\mu m \)} \]

\[f = \text{percentage through sieve of 75 \(\mu m \)} \]
Module de Richesse (cont.)

• Bitumen amount also determined by the used aggregates/minerals!
 – Density
 – Specific surface
 – Gradation curve

• Changing film thickness can influence the durability of the road!

• **DANGER:** Fixing the bitumen percentage in the tender or specification standard!

• Prescribe the binder content in volume percent or use this *Module de Richesse* formula in the tender document!
Effect changing parameters

<table>
<thead>
<tr>
<th>AGGREGATES</th>
<th>PORPHYRY TYPE</th>
<th>PORPHYRY TYPE</th>
<th>BASALT TYPE</th>
<th>BASALT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation> % passing sieve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 31.500</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>• 6.300</td>
<td>55.4</td>
<td>55.4</td>
<td>55.4</td>
<td>57.5</td>
</tr>
<tr>
<td>• 0.315</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
<td>18.7</td>
</tr>
<tr>
<td>• 0.080</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
<td>8.2</td>
</tr>
<tr>
<td>Calculation G</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>S 43%</td>
<td>43%</td>
<td>43%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>s 5%</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>f 8%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Eta Ε</td>
<td>11.96</td>
<td>11.96</td>
<td>11.96</td>
<td>13.38</td>
</tr>
<tr>
<td>Aggregate density (g/cm)</td>
<td>2.7</td>
<td>2.7</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Alpha = 2.65/ aggr.dens</td>
<td>0.9815</td>
<td>0.9815</td>
<td>0.8833</td>
<td>0.8833</td>
</tr>
<tr>
<td>BINDER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binder [ppc] - on aggregates</td>
<td>5.7</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>in mix</td>
<td>5.4%</td>
<td>4.9%</td>
<td>4.9%</td>
<td>4.9%</td>
</tr>
<tr>
<td>K (module de richesse > 3.4)</td>
<td>3.67</td>
<td>3.23</td>
<td>3.58</td>
<td>3.5</td>
</tr>
</tbody>
</table>

- Change gradation
- Change mineral; other γ
- Go to min binder content
- www.irf2010.com
EME in Europe

U.K.

PL

BE
EME in Europe

Adaptation mix and/or bitumen type and performance requirements

• Depending country/climate/traffic loading/available minerals

U.K. • High Modulus base (3.5% bit) replaced by EME (M.R. = 3.6 (> 5.4% bit))

BE • EME class 2 – extra demands on the bitumen

NL • some test sections – French tests – 15/25 bitumen

Moderate climate (Oceanic climate): 10/20 or 15/25 bitumen
EME in Europe

Poland
- Combination requirements EME class 1 and 2
 - Climate more severe
 - Lower traffic load

Finland
- EME better than concrete

Continental and Nordic climate
20/30 bitumen
Other approach EME mix and binder design
Nynas approach: Binder

- Not all hard binders fit for purpose
- Optimisation balance stiffness and fatigue
 - **Stiffness bitumen** ~ stiffness asphalt (high S)
 - Selection simple
 - **Fatigue**: Literature not unambiguous
 - Phase angle, p.i., m from BBR, ...
 - Nynas: alternative via fatigue measurements on the bitumen – rheometer
 - **Raw material**: selection and processing
 - Nypave FX 20 and Nypave FX 15
Nynas approach: Mix

- Demonstrate fit for EME class 2
- **Suspicion**: most critical = stiffness and fatigue
- **Attention**: despite stiff and hard bitumen, rutting because of high bitumen percentage
- **Optimisation** gradation curve needed!
 - Not decrease bitumen percentage
Optimisation mix

Mineral – Binder Mod.richesse

Fatigue E^6

Stiffness (MPa)

Rutting (%)

Durability (r/R)

Too much rutting

Red: Specification class 2
Blue: Nypave FX 15 test 2
Green: Nypave FX 15 test 1
Design calculation models

• Some ‘inexperienced’ users believe that road design calculation models predict reality

• Very high stiffness levels are used to calculate reductions of thickness of more than 50%

• This can result in exploding risk levels and early life failure

Do not apply thickness reduction of more that 20 to 25% versus the original structure!
EME = Optimization

Mix design • Not ‘standard’ Marshall thinking – change in mix design – performance testing

Binder • Not all hard bitumen are suitable
 – Balance between sufficient stiffness and resistance against fatigue remains the main challenge

Application • “Optimisation” compaction
Conclusions

• Binderfilm thickness is of utmost importance

• Neglecting this “law of nature” will cause early life damage

• Be careful with translating stiffness in thinner constructions
EME Technology needs a co-operation between Government, specifier, asphalt producer, contractor and bitumen supplier
EME requires as much ‘High tech‘ knowledge as a feel for the mix

Hope for more “EME believers” in Europe and to success for EME (BINDERS) in the future