Dynamic Tolling

Next-generation traffic management allowing to reduce traffic congestion and increase environmental protection based on variable and dynamic toll tariffs
Kapsch TrafficCom: Road Traffic Telematics Solutions Portfolio

Tolling Solutions
- Highway tolling
- Area tolling
- E-Vignette
- Plaza tolling
- Toll enforcement

Urban Traffic Solutions
- City tolling
- Access restriction
- Low emission zones
- Open zone parking

Safety & Security Solutions
- Speed monitoring
- Weigh in motion
- Incident detection
- Traffic surveillance

Add-on Applications
Kapsch TrafficCom – Snapshot

Scope of business:
- Turn-key solutions, component sales and operations of road infrastructure related ITS / traffic telematics solutions (focus: electronic toll collection systems)
- 16 years of experience in electronic tolling (218 references in 35 countries)

Offering:
- Development and manufacturing of core technologies, systems & products; system concept & planning; system implementation, integration & roll-out, technical operations (support & maintenance); commercial operations, financing

Selected references:
- Truck tolling system A
- Truck tolling system CZ
- All vehicle tolling (Melbourne, AUS)

Number of employees:
- 1000+ worldwide

Locations:
- Headquarters in Vienna (Austria)
- Development centers in Austria, Argentina, Sweden and USA
- Sales offices in 23 countries
Agenda

- Project Overview 01
- Real-life Sample Systems 02
- Use Cases 03
- Simulation Studies 04
- Required Framework 05
Title: Dynamic Tolling
Scope: Feasibility of managing traffic on basis of toll tariffs
Partners: - Kapsch TrafficCom AG
 - Technical University Graz (Institute for Transport Research)
Duration: Nov 2008-Dec 2009
Work packages: 1) Study & Concept (Kapsch + TU Graz)
 2) Simulation (TU Graz)
 3) Demonstrator (Kapsch)
Funding: FFG (Austrian Research Promotion Agency)
 KWF (Carinthina fund for supporting the economy)
Tolling Models

<table>
<thead>
<tr>
<th>TARIF</th>
<th>STATIC</th>
<th>VARIABLE</th>
<th>DYNAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed prices – same price over time</td>
<td>Variable (time depending) pricing scheme</td>
<td>Dynamic price model</td>
</tr>
<tr>
<td></td>
<td>Predictable prices</td>
<td>Predictable prices</td>
<td>Prices vary between min / max</td>
</tr>
<tr>
<td></td>
<td>No price-change</td>
<td>Price review after a defined time</td>
<td>Real-time price-change</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFFECTS</th>
<th>Avoid trips</th>
<th>Avoid trips</th>
<th>Avoid trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Influence transport mode choice</td>
<td>Influence route choice</td>
<td>Influence route choice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Influence departure time choice</td>
<td>Influence departure time choice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Influence transport mode choice</td>
<td>Influence transport mode choice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>Finance</th>
<th>Finance</th>
<th>Finance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Congestion decrease)</td>
<td>Congestion decrease</td>
<td>Congestion decrease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoothing peak traffic</td>
<td>(real time) Traffic Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environment (general traffic</td>
<td>Environment (traffic decrease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>decrease)</td>
<td>on demand)</td>
</tr>
</tbody>
</table>

| EXAMPLES | Austria, Germany, Italy, London | Stockholm, Singapore | HOT Lanes (USA) |

Main focus of the research project
Effects and objectives of toll tariff based traffic management

Traffic Control / Demand Management
- Reduce congestion
- Guarantee level-of-service

Environmental Protection / Quality of Life
- Reduce air pollution (PM$_{10}$, CO$_2$, NO$_X$)
- Noise protection

Effects on road traffic:
- Decreasing traffic volume
- Better geographical distribution of traffic
- Better distribution of traffic time-wise

Road User:
- Avoid trip
- Choose different route
- Choose different departure time
- Choose different transport mode

Variable or dynamic adaptation of toll tariffs
Existing sample systems of toll tariff based traffic management

France A5 & A6
- Different static pricing on two alternative routes
- A5: ~70 km longer, new highway
- A6: older highway, often congestion

Stockholm City Tolling
- Variable pricing
- Goals: reduce traffic & manage peak traffic
- Traffic reduced by ~15 % (less congestion better air quality)

HOT Lane Tolling (US)
- Dynamic pricing
- Tariff depends on traffic density and/or speed
- Goals: controlling throughput & maximize income
Use cases for toll tariff based traffic management

<table>
<thead>
<tr>
<th>OBJECTIVE</th>
<th>Network tolling</th>
<th>Section Tolling</th>
<th>HOT lane tolling</th>
<th>City tolling</th>
<th>Low Emission Zones</th>
<th>Object tolling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic control / demand management</td>
<td>Load balancing of alternative routes</td>
<td>Controlling throughput a bottleneck sections</td>
<td>Controlling throughput on HOT lanes</td>
<td>Controlling access to city zones</td>
<td>Controlling throughput at bottleneck objects</td>
<td></td>
</tr>
<tr>
<td>Example: two highways going from A to B</td>
<td>Example: section with road works</td>
<td></td>
<td>Example: peak traffic into/out of city zone</td>
<td></td>
<td>Example: bridges & tunnels</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment protection / improving quality of life</th>
<th>Reducing traffic on sensitive routes</th>
<th>Reducing traffic in sensitive zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: noise reduction at night time along a city highway</td>
<td>Example: general reduction of traffic in the entire city area</td>
<td></td>
</tr>
</tbody>
</table>
Simulation study 1: Load balancing on alternative routes

Variations of toll between Radstadt - Trautenfels ~ 55 km:

- **Toll = 0,00 € / km**
 - (64%-0%-36%)

- **Toll = 0,06 € / km**
 - (34%-0%-66%)

- **Toll = 0,22 € / km**
 - (5%-5%-90%)
Simulation study 2– Reducing traffic in low emission zone

Low Emission Zone radius 40 km:

- Toll=0,00 € / km (44% - 56%)
- Toll=0,06 € / km (64% - 36%)
- Toll=0,10 € / km (80% - 20%)
In the EU on the TEN tolls covering external costs are not allowed yet

The planned Euro-Vignette III directive would provide a basis for toll tariff-based traffic management (only for trucks, only on TEN roads)

Success Factors

• All vehicle tolling <> truck tolling: in order to be effective traffic management based on toll tariffs requires a high rate of users which are subject to toll (> all vehicle tolling)

• Sufficient road user information: easy-to-understand tariff model, full information (tariff information, traffic information, alternative route information etc.)

Technology

• Modern ETC systems already support variable and dynamic pricing

• Integration of ETC system and Traffic Management system is needed

• Advanced means for road user information are required (e.g. navigation systems displaying real-time tariffs and possible alternative routes)
Questions and discussions

Gilbert Konzett
International Business Development

Kapsch TrafficCom AG
Am Europlatz 2 | A-1120 Vienna | Austria

Phone +43 (0) 50 811 2153
Mobile +43 664 628 2153
Email gilbert.konzett@kapsch.net
www.kapsch.net

Please Note:
The content of this presentation is the intellectual property of Kapsch TrafficCom AG and all rights are reserved with respect to the copying, reproduction, alteration, utilization, disclosure or transfer of such content to third parties. The foregoing is strictly prohibited without the prior written authorization of Kapsch TrafficCom AG. Product and company names may be registered brand names or protected trademarks of third parties and are only used herein for the sake of clarification and to the advantage of the respective legal owner without the intention of infringing proprietary rights.