Sustainability of bituminous mixes manufactured at lower temperatures.

Jesús Felipo (Pavasal), José Ramón López (Pavasal), Alberto Moral (CARTIF), Rubén Irusta (CARTIF), Natalia Sánchez (CARTIF), Juan José Potti (Proyecto Fénix), José Luis Peña (Proyecto Fénix)
Sustainability of bituminous mixes manufactured at lower temperatures
Sustainability of bituminous mixes manufactured at lower temperatures

Outline

- The use of LCA in the evaluation of bituminous mixes.
- Comparison of hot and low temperature mixes.
- Key parameters to improve sustainability of pavements.
LIFE CYCLE ASSESSMENT

How has been implemented LCA in Proyecto Fénix?

- Ecoindicator 99
- Egalitarian version
- Types of damages evaluated:
 - Ecosystem quality.
 - Resources
 - Human health
GLOBAL LCA EVALUATION OF A PAVEMENT

“from the cradle to the grave”

Impacts of traffic operation are 10-100 times those induced by construction and maintenance (30 years period)

LCA EVALUATION OF ASPHALT CONCRETE

ECOSYSTEM QUALITY

- TRANSPORT: 19.84%
- MIX PRODUCTION: 1.61%
- LAYING: 4.81%
- RAW MATERIALS AND FUELS: 73.74%

www.irf2010.com
LCA EVALUATION OF ASPHALT CONCRETE

RESOURCES

- MIX PRODUCTION: 0.01%
- TRANSPORT: 4.47%
- LAYING: 3.26%
- RAW MATERIALS AND FUELS: 92.26%
LCA EVALUATION OF ASPHALT CONCRETE

HUMAN HEALTH

- RAW MATERIALS AND FUELS: 74.48%
- TRANSPORT: 15.17%
- MIX PRODUCTION: 5.53%
- LAYING: 4.81%
LCA EVALUATION OF ASPHALT CONCRETE

DAMAGES DISTRIBUTION (ECOPOINTS)

- Raw materials and fuels: 87.67%
- Mix production: 1.49%
- Transport: 7.22%
- Laying: 3.61%

www.irf2010.com
LCA EVALUATION OF ASPHALT CONCRETE

CLIMATE CHANGE

- MIX PRODUCTION: 29.53%
- TRANSPORT: 11.09%
- LAYING: 3.63%
- RAW MATERIALS AND FUELS: 55.76%
Sustainability of bituminous mixes manufactured at lower temperatures

- Main claims of warm and half-warm mixes:
 - Energy savings
 - Lower GHG emissions
 - Lower COV emissions (health and safety).
ENVIRONMENTAL IMPACTS OF HOT vs WARM MIXES (UP TO MANUFACTURING)

- Cog. plant (Avoided burdens)
- Cog. plant (Electricity)
- Cog. plant (Combustion)
- Trolley
- Thermal oil circuit
- Bitumen tanks
- Mixer
- Filler lift
- Aggregate lift
- Screening
- Drier (Combustion)
- Drier (Extractor)
- Drier (Electricity)
- Conveyor belt
- Loader
- Aditive
- Natural gas in Cogeneration Plant
- Natural gas in drier
- Diesel
- Bitumen transport
- Bitumen modifier
- Bitumen fabrication
- Aggregate transport
- Aggregate extraction
- Thermal oil
KEY PROPERTIES OF ASPHALT PAVEMENTS

DURABILITY

- Stiffness.
- Fatigue resistance.
- High resistance to stripping.
KEY PROPERTIES OF BITUMINOUS MIXES

STIFFNESS (I)

35-50 BITUMEN (PENETRATION 50 X 0,1 MM)

<table>
<thead>
<tr>
<th>Mix temperature</th>
<th>Recovered binder (penetration x0,1 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>155-160°C</td>
<td>23</td>
</tr>
<tr>
<td>120-125°C</td>
<td>29</td>
</tr>
</tbody>
</table>
KEY PROPERTIES OF BITUMINOUS MIXES

STIFFNESS (II)

<table>
<thead>
<tr>
<th>Mix temperature</th>
<th>Recovered binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>155-160°C</td>
<td>23</td>
</tr>
<tr>
<td>120-125°C</td>
<td>29</td>
</tr>
</tbody>
</table>

-25% stiffness

• Should we consider the lower stiffness to redesign the pavement?
• Is there any improvement in fatigue?
KEY PROPERTIES OF BITUMINOUS MIXES

![Diagram: Stiffness Modulus vs Compaction Temperature (Hot Mixes)]

- **S-12 60/70 -3 SER**
- **AC16 Surf 50/70 S COL**
- **F-10 BM3a COL**
- **F-8 BM3c SOR**
- **S-20 BM3c SOR**
- **S-20 10%RAP-2 SOR**
Sustainability of bituminous mixes manufactured at lower temperatures

Conclusions

- LCA allows a wider vision to get real sustainability.
- Durability of the pavement is the main goal.
- Warm and half-warm mixes are in the right way but must be thoroughly studied according to performance criteria.
Sustainability of bituminous mixes manufactured at lower temperatures

Thank you for your attention!

www.proyectofenix.es