Study on Asphalt Pavement Technologies
Targeting the Prevention of Global Warming

Masahiko Iwama, Tamotsu Yoshinaka, Shinobu Omoto and Nobuyuki Nemoto

International Road Federation
16th World Meeting
May 25th to 28th 2010, Lisbon, Portugal

www.irf2010.com
Outline of Presentation

◆ Use of Warm-Mix Asphalt
 - Basic concept
 - Laboratory test results
 - CO$_2$ reduction at paving work
◆ Solar Heat-blocking Pavement
 - Basic concept
 - Effect of temperature reduction
 - Case study (Airport taxiway)
◆ Conclusions

www.irf2010.com
Warm-mix Asphalt
- Background -

Warm-Mix Asphalt:
- Reduction in CO$_2$
- Improvement of workability, especially in winter

• In 1997, NIPPO developed the additive agent called “ECOFINE”
• It can be used for both straight and modified asphalts
• 30 °C to reduction in mixing temperature was achieved
What is **ECOFINE**?

Forming-based special additive agent for WMA technology

Production: Fine forms occur in bitumen

A volume of bitumen increases considerably

Workability of bitumen will be improved

Laying: Good compaction is achieved by “bearing effect”

Roller Compaction Coarse aggregate Mastic

Asphalt mixture

Fine forms
Properties of ECOFINE
-Micro-form generation-

- Add the agent of 2 kg/ton
- Keep forming state for a long duration;
- Laboratory: Approx. 120 min.
- Site: 4 to 5 hours

[Graph of foaming duration vs. time]

<table>
<thead>
<tr>
<th>Special Additive</th>
<th>Straight Asphalt 60/80, 130°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7% by mass of bitumen</td>
<td></td>
</tr>
</tbody>
</table>

[Image of foaming agent and special additive]
Warm-mix Asphalt Laboratory test results

- **ECOFINE**
- **Without Additive**

<table>
<thead>
<tr>
<th>Compaction Degree (%)</th>
<th>Compaction Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>130</td>
</tr>
<tr>
<td>102</td>
<td>120</td>
</tr>
<tr>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

- Normal Asphalt Mixture
 - Mixing Temp.: 160°C
 - Compac.Temp.: 140°C

- Dense Asphalt Concrete / Max.Size13mm
 - Straight Bitumen 60/80
 - Mixing Temp.: 130°C

www.irf2010.com
Warm-mix Asphalt
Laboratory test results

Dense Asphalt Concrete / Max. Size 13mm Straight Bitumen 60/80

- Marshall Stability
 - Normal Asphalt Mixture
 - ECOFINE 30°C Lower
 - Without Additive 30°C Lower

- Ravelling Abrasion (cm²)

- Stability

- Ravelling Abrasion
Simplification of paving equipment train: CO$_2$ reduction at paving work

◆ Simplified compaction train was examined
<table>
<thead>
<tr>
<th>Items</th>
<th>Type of Mix.</th>
<th>Surface Mixture Type 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A (Control)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B (Simplified)</td>
</tr>
<tr>
<td>Applied Section</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Special Addition</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>Mixing Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity of Mixer</td>
<td>2,000 kg/batch</td>
<td></td>
</tr>
<tr>
<td>Dry Mixing Time (sec)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Wet Mixing Time (sec)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Mixing Temp. (°C)</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Compaction (time)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macadam Roller</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Pneumatic Tired Roller</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>6 t Combined Roller</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Cored Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>2.339</td>
<td>2.324</td>
</tr>
<tr>
<td>Air Void (%)</td>
<td>4.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Compaction Degree (%)</td>
<td>98.9</td>
<td>98.6</td>
</tr>
<tr>
<td>Evenness (σ) (mm)</td>
<td>0.79</td>
<td>0.78</td>
</tr>
</tbody>
</table>
CO₂ reduction at paving work
- Calculated CO₂ emission -

- Approx. 53% of CO₂ reduction can be saved thanks to the special additive.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>CO₂ Discharge (kg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ton Combined Roller</td>
<td>24.8</td>
</tr>
<tr>
<td>Asphalt Paver</td>
<td></td>
</tr>
<tr>
<td>Pneumatic Tired Roller</td>
<td>52.9</td>
</tr>
<tr>
<td>Macadam Roller</td>
<td></td>
</tr>
<tr>
<td>Asphalt Paver</td>
<td></td>
</tr>
</tbody>
</table>

Simplified Normal Combination
Solar Heat-blocking Pavement
Solar Heat-blocking Pavement - Background -

Urban areas and pavements in Japan

- Surface temperatures of asphalt pavement reach 60°C or higher in summer
- Asphalt surfaces cover approx. 20% of urban areas
- Pavement is a source of heat, similar to concrete structures

Hotter pavement:
- leads to the urban heat island phenomenon
- may affect the health of pedestrians due to the higher temperatures

www.irf2010.com
Basic concept of solar reflective technology

Surface course of hot mix asphalt

- Low reflection for the visible rays
- High reflection for the near infrared rays

Solar radiation

Apply high albedo and dark colored thin treatment materials

Component of hot mix asphalt

Hollow ceramic particle

Highly reflective pigment

www.irf2010.com
Albedo characteristics of treatment materials

Albedo: Degree of reflection

Visible ↔ Near-infrared rays

New surface treatment materials L^*40 (dark gray)

Straight asphalt 60/80

Normal paint materials L^*40 (dark gray)

- Straight asphalt has a **very low albedo**
- Dark-gray treatment materials have a **low albedo for visible rays, but a very high albedo (about 90%) for near-infrared rays**
The maximum temperature of the conventional pavement rose to 57.4°C.
The temperature of the treated surface was reduced by about 16°C.
Case study
- Rutting mitigation at airport taxiway -
Narita International Airport

Temperatures both in conventional surface and S.H.P. were measured at 20 mm, 80mm and 200mm below the surface

www.irf2010.com
Temperature of pavements

Surface (20 mm below)

Milled Surface (200 mm below)

Max. temperature (°C)

Month

2006 2007 2008

Conventional S.H.P Ambinet temp.
Differences of rut depth

Rut depth (S.H.P.)
Rut depth (Conventional)

Max. rut depth (Conventional)

Max. rut depth (S.H.P.)

- After
- 2 months
- 1 year
- 1.5 years
- 2 years
- 2.5 years
- 3 years
- 3.5 years
- 4 years
- 4.5 years

2006.7
2007
2008
2009

Rut depth (mm)
Max. rut depth (mm)
Conclusions

◆ The application of micro-forms WMA(ECOFINE) enables the production and laying temperature to be 30 °C lower than normal bitumen.

◆ Approx. 50% of CO₂ generation can be reduced by decreasing the number and size of rollers.

◆ The reduction in surface temperatures for the heat-blocking pavement is approximately 16 °C.

◆ This technology would be effective to the rutting as the rate of rut depth was approximately a half, compared to the dense-graded asphalt surface at the taxiway.
Thank you
Properties of ECOFINE
Estimated CO₂ emission; 30 to 50 °C reduction

Asumption for calculation:
- Moisture content % agg.: 3%
- Ambient Temp.: 30°C

Estimated CO₂ Discharge (kg/ton)

Mixing Temperature (°C)

14%
23%
Case studies

- Highway maintenance -

- Divided the maintenance area into 4 sections
- Compared construction time between Control and ECOFINE sections in surface, binder course and L.S.M.

<table>
<thead>
<tr>
<th>Section</th>
<th>Surface</th>
<th>Binder Course</th>
<th>Large Stone Mix (L.S.M.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (ECOFINE)</td>
<td>2 cm</td>
<td>3 cm</td>
<td></td>
</tr>
<tr>
<td>B (Control)</td>
<td>3 cm</td>
<td>2 cm</td>
<td></td>
</tr>
<tr>
<td>C (ECOFINE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (Control)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L = 400 m
W = 3.5 m

Plane figure

Section

- t = 6 cm
- t = 4 cm
- t = 10 cm

Thermo-Couple

www.irf2010.com
Case studies
- Highway maintenance -

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Surface</th>
<th>Binder course</th>
<th>Large Stone Mix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>2.314</td>
<td>2.309</td>
<td>2.369</td>
</tr>
<tr>
<td>Air Void (%)</td>
<td>5.7</td>
<td>5.9</td>
<td>4.1</td>
</tr>
<tr>
<td>Compaction Degree (%)</td>
<td>97.7</td>
<td>97.5</td>
<td>100</td>
</tr>
</tbody>
</table>
Case studies - Highway maintenance -

<table>
<thead>
<tr>
<th>Section</th>
<th>Rut depth (mm)</th>
<th>Evenness (mm)</th>
<th>Skid resistance (BPN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After construction</td>
<td>After 6 months</td>
<td>After construction</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0.86</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
<td>0.74</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0.98</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Note: Section A Surface + Binder course (*ECOFINE*), B Surface + Binder course (Control), C Surface + Large Stone Mix. (*ECOFINE*), D Surface + Large Stone Mix. (Control)
Case studies - Highway maintenance - Surface & Binder courses

- ECOFINE Binder
- Control Binder
- ECOFINE Surface
- Control Surface
- Existing Surface
- Ambient Temp.

Temperature (°C)

Time difference when surface temp. is at 60°C: about 50 min.

Temp. difference of Surface Layer: about 4°C
Temp. difference of Binder Layer: about 4°C
Case studies - Highway maintenance - Surface & Large Stone Mix.

Time difference when surface temp. is at 60°C: about 70 min.

- ECOFINE L.S.M. (Section C)
- Control L.S.M. (Section B)
- ECOFINE Surface (Section C)
- Control Surface (Section D)
- Existing Surface
- Ambient temp.

Temperature difference of Surface Layer: about 8°C
Temperature difference of Large Stone Mix: about 6°C
Environmental issues

Hotter pavement:
- leads to the urban heat island phenomenon
- may affect the health of pedestrians due to the higher temperatures

Public demand to reduce the temperature of road pavement
Research & Development
Basic concept

Highly reflective pigment
Highly reflective for near-infrared rays → Prevention of heating
Low reflectivity for visible rays → Enables various colors to be selected

Hollow ceramic particles
- Reflect solar radiation to the atmosphere

Hollow ceramic particles
(5～150µm)

www.irf2010.com
What is solar radiation?

- Solar radiation mainly consists of visible rays and near-infrared rays and includes some ultraviolet rays.
- 50% of solar energy is visible rays; the rest is near-infrared rays.

![Diagram showing the distribution of solar radiation wavelengths and their energy content.](chart1.png)
Section of pavements

Solar Heat-blocking Pavement

Conventional Surface

Construction overview

- Coated layer
 - Surface: Large stone mix. (Modified Asphalt) \(t = 80 \text{ mm} \)
 - Binder course: Large stone mix. (Modified Asphalt) \(t = 120 \text{ mm} \)
 - Bituminous stabilization
 - Cement stabilization
 - Crusher-run

- Depth of Thermo-couple

- Inter layer (80 mm below)
- Milled surface (200 mm below)
- Surface (20 mm below)