Climate Change Challenge
Theme 3 – Sustainable Roads

President: Aniceto Zaragoza, Oficemen, Portugal
Moderator: Bachar Hakim, Scott Wilson, UK

International Road Federation 16th World Meeting
Lisbon, 25-28 May 2010
Climate Change Challenge Workshop
Theme 3 – 26 May 2010

- Introduction
- Summary of papers
- Seven papers (USA, Finland, Switzerland, France, Spain, and Netherlands)
- Oral presentations (15 minutes each)
- Debate on main statements
Climate Change Challenge
Papers

1. **Greenroads: development and application of a sustainability rating system for roadways** - Steve Muench, Jeralee Anderson and Tim Bevan, University of Washington, USA

2. **Software tool for environmental, economic and social assessment of road projects** - Konsta Sirvio and Sari Jusi, Sirway Ltd. Finland

3. **Monitoring and assessing GHG emissions from road construction and maintenance activities: the IRF GHG calculator** – Susanna Zammataro, IRF, Switzerland

4. **A unique eco-comparator for all the French road builders’ companies** – Christine Leroy, USIRF Route de France, France

5. **Energy sustainable bituminous mixes** - Maria Del Rio Prat, Elsa Sanchez-Alonso, Daniel Castro-Fresno, Angel Vega Zamanillo and Miguel Angel Calzada Perez, University of Cantabria, Spain

6. **Adapting transport infrastructure for climate change** – Adnan Rahman, Ecorys, Netherlands

7. **Environmental audits for roads** – Enrique Miralles Olivar, Spanish Road association, Spain
1. Greenroads: development and application of a sustainability rating system for roadways

- Seven key components to sustainability: ecology, equity, economy, extent, expectation, experience and exposure.
- Greenroads (V1) has 11 project requirements, 37 voluntary credits (108 points) and up to 10 points worth of customer credits.
- Project level sustainability performance can be assessed.
- Greenroads sets “achievement levels” for scoring (Certified, Silver, Gold and Evergreen).
- Use as an external standard, a project accounting, a sustainable solution and for competitive advantage.
2. Software tool for environmental, economic and social assessment of road projects

• Economic rate of return (vehicle operating cost, travel time and accident costs) for project assessment
• Incorporate environmental and social factors for project planning and post evaluation
• The model is mainly for rural roads
• To assess the impact of road and improve access to markets and services (health and education) on reducing poverty and vulnerability
• Impact on economic growth (reducing cost of production) and quality of life
• Direct impacts (travel time and cost, fuel saving, safety, employment
• Negative impact (environmental, air and water quality, noise and greenhouse emissions)
3. Monitoring and assessing GHG emissions from road construction and maintenance activities: the IRF GHG calculator

- IRF has designed a methodology for the calculation and modelling GHG from road construction projects
- Environmental analysis of road projects
- Comparing various road building technique, materials, supply and transport
- Calculate GHG emissions for projects
3. Monitoring and assessing GHG emissions from road construction and maintenance activities: the IRF GHG calculator

Model Structure

Inputs

Construction

Construction materials (pavement/drainage/etc)

Transport/fuels

Modelling

Models: Road types
Road designs
Regions

CO2/Carbon Dioxide Equivalents

Quantities
3. Monitoring and assessing GHG emissions from road construction and maintenance activities: the IRF GHG calculator

IRF GHG CALCULATOR

- **Modules**
 - Pre-construction
 - Pavement

MODULES STRUCTURE

1. **Inputs**
 - Road project data
 - Area-Location
 - Specifications-Design...Etc

2. **Calculations**
 - Materials quantities
 - Materials transport
 - Machinery use
 - Energy use (electricity / fuels)

3. **Standards**
 - GHG Emissions standards:
 - Materials production
 - Transportation / Modes / Energy

4. **Results**
 - Total GHG emissions / Materials
 - Energy use
 - Disaggregated Results
3. Monitoring and assessing GHG emissions from road construction and maintenance activities: the IRF GHG calculator
4. A unique eco-comparator for all the French road builders’ companies

- Environmental tool for French road builders to compare technical solutions offered to clients
- Independently auditable guidelines
- Life cycle analysis
- GHG emissions, preservation of natural resources, and consumption of coated aggregates (RAP, etc.)
- Current models include Ecologiciel (Colas), Gaia (Eurovia) and Calculette CO$_2$ (Effiage)
- Financial, technical and environmental assessment of bids (60/20/20)
4. A unique eco-comparator for all the French road builders’ companies

Evaluation method: The LCA applied to construction, the use and improvement/demolition of a highway

- **Asphalt plant**
- **Concrete plant**
- **Gravel plant**

Transport and implementation

Production of aggregates, binders

- Raw materials & energy

Impacts during the lifetime of the highway (maintenance, surface waters, etc...)

Recycling at the end of the highway’s life cycle

This comprehensive analysis is of interest to the project owner:

It is based on the design and above all the maintenance strategy
4. A unique eco-comparator for all the French road builders’ companies
5. Energy sustainable bituminous mixes

- Energy sustainable bituminous mixes with low energy consumption during mixing and compacting
- Comparative study to assess contributing variables on energy and fuel use
- Continuous (AC) and discontinuous (SAM) mixes, natural and crushed aggregates, binder with different penetrations, additives and temperatures were considered
- Conclusions:
 - Higher energy required for continuous mixes with lower binder content, and greater aggregate size
 - Higher energy required for low penetration binder
 - Lower energy required for rounded aggregates
6. Adapting transport infrastructure for climate change

- Actions to slow climate change, mitigate its impact and adapt to it are required
- Technical challenge for the design, construction and maintenance of transport infrastructure
- Challenge for decision makers, planners and policy makers:
 - The sporadic nature and slowness that the climate change impact become visible
 - Uncertainty
 - Lack of adequate information about local impacts
 - Lack of resources to undertake change in the transport system structure
7. Environmental audits for roads

• Lack of criteria on road project environmental assessment
• European guideline on environmental impact (2001) to compare alternative construction solutions but not operations
• Spanish Road Association is developing a methodology considering the environmental impact of road construction, routine preventative and planned maintenance and during operation
• Audit includes
 – Environmental impact assessment
 – Compliance with established measures
 – Maintenance and preservation activities
 – Infrastructure sustainability indicators
 – Landscape integration of roads