16th World Meeting

Safe Dynamic Highways

Mike Dreznes & Thierry Reip

www.irf2010.com
CONGESTION AROUND THE WORLD
Unless something changes, Americans can expect to spend 160 hours annually (4 work weeks) stuck in traffic by the year 2035.
Congestion Causes....

www.irf2010.com
Congestion Causes....

Wasted Valuable Fuel
Congestion Causes....

Wasted Valuable Fuel
Air Pollution

www.irf2010.com
Congestion Causes....

Wasted Valuable Fuel
Air Pollution
Unsafe Roads
Congestion Causes....

WASTED VALUABLE FUEL
AIR POLLUTION
UNSAFE ROADS
ROAD STRESS!
Social costs:
Situation in Europe: +/- 100 billions €/year
Situation in the USA: +/- 90 billions $/Year

TIME IS MONEY

* Traffic congestion in Europe, table ronde de l’ECMT (European Conference of Ministers of Transport), 2006

www.irf2010.com
Social costs:

Situation in Europe: +/- 100 billions €/year

Situation in the USA: +/- 90 billions $/Year

* Traffic congestion in Europe, table ronde de l’ECMT (European Conference of Ministers of Transport), 2006

WHAT CAN BE DONE TO ALLEVIATE THIS CONGESTION?
WHAT CAN BE DONE TO ALLEVIATE THIS CONGESTION?

- use mass transit
- use ramp metering
- use congestion tolling
- use alternative day licence plates

But also:
- build new roads
- use the existing infrastructure more efficiently
Traffic flow the basic principle

Capacity [vehicles / hour / lane]

- **Optimal limit (MIN)**: 1500
- **Upper limit (MAX)**: 1800

In Europe the target is to maintain an average of 1600 UVP/h (work situation).

- **Fluid traffic flow**
- **Stop & go – slower traffic**
- **Traffic Jam**
"Dynamic Highways" will reduce congestion using existing lanes

• A "Dynamic Highway" is a road designed to interact with motorists and respond to capacity needs. It utilizes many of the features identified as well as managed lanes.

www.irf2010.com
Managed Lanes can use existing roads to redistribute traffic to match peak demand

"Dynamic Highway"

“Directional Peak” traffic flow
Managed Lanes redistribute traffic using underutilized road lanes

www.irf2010.com
QMB - Quick Movable Barriers

would provide the appropriate tool to manage lanes
QMB - Quick Movable Barriers

would provide the appropriate tool to manage lanes

Permanent Applications

Construction Applications

www.irf2010.com
Center lanes may be expanded, eliminated, or relocated to optimize general purpose and special use lanes.
Typical Moveable Barrier Applications:

Permanent median barrier
HOV – Contraflow
Dallas, Texas DART I-30

- Vehicle Occupancy:
 US Average = 1.1
 Dallas HOV = 2.9

- Saves 14 minutes / day
 (Approx. 1 Million hours/year)

- Benefit to Cost Ratio = 6.5 : 1
HOV-Contraflow
Honolulu, Hawaii H-1

- Move More People with Fewer Vehicles
- Reduced morning HOV commute by 25 minutes
- Increased average number of passengers per vehicle
- Increased Bus transit rider ship by over 89%
- Benefit to Cost ratio > 10 : 1

www.irf2010.com
Creating Managed Lanes with Moveable Concrete Barrier

Contraflow Lanes

Moveable Median (Reversible Lanes)
The Dynamic Highway

Including Moveable Barrier in the Planning Stages
Just a Few of the Managed Lanes Applications Using Moveable Concrete Barrier Around the World

- New Zealand
- Dallas, TX
- Tappan Zee Bridge, NY
- Montreal, Canada
- San Diego, CA
- Boston, MA
- Washington, D.C.
- Honolulu, HI
- Puerto Rico (Multiple)
- Gowanus Expressway, NY
- Midtown Viaduct, NY
- Seattle, WA
- Ben Franklin Bridge, PA
- Walt Whitman Bridge, PA
- Commodore Barry Bridge, PA
- Mexico City, Mexico

Would this not suit to European cities as well?

www.irf2010.com
System Features

2 primary elements: Barrier Transfer Machine and barrier
Tested to NCHRP 350, EN1317 for positive barrier protection
Reduces fuel consumption and air pollution

The system moves the barriers at

10 to 15 Km/h

www.irf2010.com
“Green” Benefits of Moveable Barrier

Traffic moving at a faster speed reduces CO$_2$ emissions

H-1 Freeway, Honolulu, HI

• “Zipper” lane commuters save 25 minutes on the morning commute
“Green” Benefits of Moveable Barrier

Traffic moving at a faster speed reduces CO$_2$ emissions
HOV ridesharing means less vehicles on the road

East R.L. Thornton Freeway, Dallas, TX

- Carpoools Increased 300%*
- Bus Ridership Increased 38%
- 15,000 Commuters Daily in the aHOV Lane
- Vehicle Occupancy:
 US Average = 1.1
 QMB™ Dallas = 2.9

www.irf2010.com
“Green” Benefits of Moveable Barrier

Traffic moving at a faster speed reduces CO$_2$ emissions
HOV ridesharing means less vehicles on the road
Less construction = less damage to the environment
Safe Dynamic Highways
Moveable Barrier Summary
1. Add More Lanes: Into and out of urban centers without costly constructability and environmental reviews
1. Add More Lanes: Into and out of urban centers without costly constructability and environmental reviews

2. Ready to Go: Reconstruction of major corridors can take years. Moveable barrier can be deployed in months
1. **Add More Lanes:** Into and out of urban centers without costly constructability and environmental reviews

2. **Ready to Go:** Reconstruction of major corridors can take years. Moveable barrier can be deployed in months

3. **Improve Safety:** Barrier redirects vehicles from crossing over into opposing lanes.
1. **Add More Lanes:** Into and out of urban centers without costly constructability and environmental reviews.

2. **Ready to Go:** Reconstruction of major corridors can take years. Moveable barrier can be deployed in months.

3. **Improve Safety:** Barrier redirects vehicles from crossing over into opposing lanes.

4. **Reduce Congestion:** Managed lane strategies can improve traffic flow, increase transit ridership to relieve congestion.
Safe Dynamic Highways
Moveable Barrier Summary

1. **Add More Lanes:** Into and out of urban centers without costly constructability and environmental reviews.

2. **Ready to Go:** Reconstruction of major corridors can take years. Moveable barrier can be deployed in months.

3. **Improve Safety:** Barrier redirects vehicles from crossing over into opposing lanes.

4. **Reduce Congestion:** Managed lane strategies can improve traffic flow, increase transit ridership to relieve congestion.

5. **Environmentally Friendly:** Accelerate traffic to reduce fuel consumption and emissions without taking additional right-of-way.
Safe Dynamic Highways

Moveable Barrier Summary

1. **Add More Lanes**: Into and out of urban centers without costly constructability and environmental reviews

2. **Ready to Go**: Reconstruction of major corridors can take years. Moveable barrier can be deployed in months

3. **Improve Safety**: Barrier redirects vehicles from crossing over into opposing lanes.

4. **Reduce Congestion**: Managed lane strategies can improve traffic flow, increase transit ridership to relieve congestion.

5. **Environmentally Friendly**: Accelerate traffic to reduce fuel consumption and emissions without taking additional right-of-way

6. **Reusable Asset**: Deploy and re-deploy MB to meet changing traffic conditions and extend service highway life between major reconstructions
Safe Dynamic Highways
Moveable Barrier Summary

Permanent Applications

Construction Applications

You can make the difference! Thanks you