Threshold Values of Pavement Characteristics at the Initial Stage of a Road Lifetime

Prof. Anastasios Mouratidis, Dept. of Civil Engineering, Aristotle University of Thessaloniki, Greece

Dipl. Civil Engineer, MSc, PhD Candidate
Grigorios Papageorgiou, Dept. of Civil Engineering, University of Thessaly, Greece
Pavement Performance and Maintenance Needs Issues

- Economizing funds and, at the same time, offering a performant road
- Occurrence of a road closure, either complete or by lanes
Pavement design

• Design of the pavement in a rational way, so that the deterioration is equally distributed to all parts and characteristics
• Balanced deterioration of the pavement, distributed among skid-resistance, evenness, surface integrity and structural condition
Rehabilitation Options for Pavement Defects

- **Skid-Resistance**: Antiskid layer or micro surfacing
- **Evenness**: Local reshape + surfacing
- **Cracking**: Sealing + surfacing
- **Rutting**: Surface treatment + surfacing
- **Ravelling**: Bituminous spray + surfacing
Criteria for Defining Limit Values of Pavement Characteristics

- Qualitative determination of limit values
- Quantitative determination of limit values
Criteria for Defining Limit Values of Pavement Characteristics

- Accidental rate vs. SFC
 - Inflection point of accident rate
 - Three curves with different minR values: minR=100, minR=250, minR=500
Criteria for Defining Limit Values of Pavement Characteristics
Traffic Relating Equations of Pavement Features

• PSR = PSR\textsubscript{0} \times [1 - a \times \ln(1 + T)]

• SFC = SFC\textsubscript{0} \times (1 - \kappa \times T)

• IRI = IRI\textsubscript{0} \times e^{0.059 \times b \times A} \text{ or } IRI = IRI\textsubscript{0} \times e^{\lambda T}

• RD = RD\textsubscript{0} + \beta \times h\textsubscript{0} \times T^{0.25}
Long service life of pavement

- Rare maintenance operations
- Lower cost of upgrading works
- Minimum disturbance to traffic
Basic concept

• Definition of suitable values of pavement characteristics at the “opening-to-traffic” stage establishing high level-of-service for a long time
• Time schedule - the timing of future maintenance
Basic structure

• Definition of limit values at the operational stage

• Establishment of traffic – dependent equations
Basic structure

• Assuming RD=0, at the initial stage of a road lifetime

• Time elapsed and traffic volume introduced in traffic – dependent equations
Common practice vs proposed methodology

Separate rehabilitation operations for each feature:

- Skid-resistance upgrading
- Evenness repair
- Rutting treatment

Number of operations and road closures in common practice: 6

Overall rehabilitation by adjusting initial values for SFC and IRI:

Number of operations required and road closures by adjustment of initial values: 2

www.irf2010.com
Not uniform deterioration
Commonly used limit values of pavement features

<table>
<thead>
<tr>
<th>Pavement feature</th>
<th>Indicator or factor used</th>
<th>Limit values at the operational stage of road life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>National network</td>
</tr>
<tr>
<td>Skid-resistance</td>
<td>SFC</td>
<td>0.40 - 0.50</td>
</tr>
<tr>
<td>Evenness</td>
<td>IRI (m/km)</td>
<td>2.65 - 3.00</td>
</tr>
<tr>
<td>Rutting</td>
<td>RD (mm)</td>
<td>6 - 15</td>
</tr>
</tbody>
</table>

www.irf2010.com
Benefits for the Road Operator - Conclusions

- Minimum required maintenance operations
- Useful tool for a rational policy of managing road assets with direct retributive profit in terms of maintenance expenses, users cost and ride discomfort